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Abstract: Can supersymmetric models with a moderate stop mass be made consistent

with the negative Higgs boson searches at LEP, while keeping perturbative unification

manifest? The NMSSM achieves this rather easily, but only if extra matter multiplets

filling complete SU(5) representations are present at intermediate energies. As a con-

crete example which makes use of this feature, we give an analytic description of the

phenomenology of a constrained NMSSM close to a Peccei-Quinn symmetry point. The

related pseudo-Goldstone boson appears in decays of the Higgs bosons and possibly of the

lightest neutralino, and itself decays into bb̄ and τ τ̄ .
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1. Introduction and motivations

The absence of any clear signal of the Higgs boson(s) at LEP is a disturbing fact for the

Minimal Supersymmetric Standard Model (MSSM). As well known a heavy stop could

be the explanation. Although possible, however, this weakens the view that requires su-

persymmetry to be visible at the LHC, especially since the top, and the stop, have the

strongest coupling to the Higgs boson system. In the attempt to avoid this quite unpleas-

ant road, several proposals have in fact been made: among them, the consideration of the

Next to Minimal Supersymmetric Standard Model (NMSSM) has received a great deal

of attention. It is in fact true that the extra contribution to the quartic Higgs coupling

arising in the NMSSM can easily accommodate a lightest Higgs boson even much heavier

than in the MSSM [1, 2]. A strong constraint, however, to which we stick in this paper, is

its compatibility with manifest perturbative unification.

Although the NMSSM is a very minimal extension of the MSSM, it has a drawback: it

allows to introduce several more parameters, which often make the various analyses difficult

to follow or can even obscure the very search for significant phenomenological patterns. In

this paper we try to clarify a possibility offered by the NMSSM to comply with the LEP

constraints1 in a weakly fine-tuned and not too narrow region of its parameter space, while

1For other attempts see e.g. [3 – 5]. There are, however, two different aspects of the problem that may

have not been equally addressed in these works: the level of fine-tuning in the Z-mass and the narrowness

of the region of parameter space consistent with current data.
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insisting on a relatively light stop. A key point is that such possibility rests on the largest

possible values of the usual λSH1H2 coupling of the NMSSM consistent with manifest

perturbative unification, including the possible existence of extra matter multiplets filling

complete SU(5) representations at intermediate energies [8].

With CP conserved in the scalar sector, the NMSSM has three CP even and two CP

odd neutral fields. With the standard definition of the Higgs doublets H1 and H2, the only

scalar with tree level coupling to the vector boson pairs VV, often called h since it is the

closest to the Standard Model (SM) Higgs boson, has the composition2

h = h0
1 cos β + h0

2 sinβ (1.1)

and tree-level diagonal mass-squared

(m0
h)2 = M2

Z cos2 2β + λ2v2 sin2 2β, (1.2)

corrected by the well known radiative contribution from top-stop loops (for moderate mix-

ing, |At/mt̃| . 1)

m2
h ≃ (m0

h)2 +
3m4

t

4π2v2
log

m2
t̃

m2
t

. (1.3)

We do not show in this radiative correction a small positive contribution due to At, because

in practice for moderate mixing it is compensated by a further negative O(αsαt) correction

at the two-loop order. Thus the one-loop result (1.3) remains a reasonable approximation.

Note that equation (1.2) is valid for any scalar potential of the form

V = V gauge(H1,H2) + µ2
1(S)|H1|2 + µ2

2(S)|H1|2 − (µ2
3(S)H1H2 + h.c.) + λ2|H1H2|2 + V (S)

(1.4)

i.e., in particular, for any NMSSM which stays perturbative up to the GUT scale.

The phenomenology of the NMSSM in relation with the Higgs boson searches at LEP

certainly depends on the value of mh, but crucially also on the mixings of h with the two

other CP even scalars, since m2
h, being a diagonal entry of a positive definite squared mass

matrix, gives only an upper bound on the mass squared of the lightest physical CP-even

scalar.

With this in mind, this paper consists of two logically independent but also comple-

mentary parts. In the first one we discuss the maximum possible values of the coupling λ,

and therefore of mh, in presence of extra matter multiplets filling complete SU(5) repre-

sentations at intermediate energies (section 2). Furthermore, based on the values that we

find for mh, we consider a simple and generic 2×2 mixing model between h and the lightest

among the two remaining CP even scalars, which, before mixing with h, do not couple at

all with VV (section 3). In the second part we describe a fully detailed and motivated

version of the NMSSM with an approximate Peccei-Quinn symmetry that realizes the phe-

nomenological pattern outlined in the first part. This approximate symmetry restricts the

number of effective parameters and makes possible an analytic description of most of the

relevant features we want to underline.

2As usual, tan β = v2/v1, vi = 〈H0
i 〉, v2

1 + v2
2 = 174 GeV.
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Figure 1: Lower (red) curve: the maximal value of λ(MZ) as a function of tanβ in NMSSM

without extra matter at intermediate energies, subject to the condition λGUT/4π < 0.3, κGUT = 0.

Upper (blue) curves: same but with n5 = 3 extra 5 + 5̄ at 1TeV, and λGUT/4π < 0.3, 0.15.

2. On the maximal value of the SH1H2 coupling

From eq. (1.2) mh is especially sensitive to the value of the coupling λ at the weak scale,

which is constrained by demanding that λ stays perturbative in its RGE evolution all the

way up to the GUT scale. More specifically, since λ grows with the energy from the weak

to the GUT scale, we require for its value at the GUT scale, λGUT < 0.3 · 4π.

The RGEs of λ and of other relevant couplings can be found in appendix A. A

significant indirect effect on the evolution of λ is caused by the presence at intermediate

energies of vector-like supermultiplets filling complete SU(5) representations [8]. These

multiplets increase the gauge couplings at higher energies, which in turn slows down the

growth of both λ and yt, delaying the onset of nonperturbative behavior. This effect is

illustrated in figure 1 which shows as function of tanβ the maximum value of λ at the weak

scale without or with extra-matter effects (three (5 + 5̄) of SU(5) at the weak scale), for

the current value of mt = 171 GeV.3 Consequently, from eqs. (1.2), (1.3), figure 2 gives the

maximum value of mh for a moderate stop mass, mt̃ = 300 GeV. The upper blue curves, for

λGUT/4π = 0.3, 0.15 are again with three (5 + 5̄) of SU(5) at the Fermi scale, whereas the

lower red curve, for λGUT/4π = 0.3, includes in the RGE evolution the standard matter

effects only.

Several features in these figures are worth being observed. All the curves in figure

2 go for large tan β to a common asymptotic value which is the upper bound on mh in

the MSSM (for the same mt̃ = 300 GeV and moderate mixing). Relative to this value,

the increment in mh due to the extra three (5 + 5̄) is clearly significant, especially since

without extra matter the maximum value of mh barely touches the LEP bound on the SM

Higgs boson mass of about 115 GeV. This is even more so since the upper limit on mh is

essentially saturated for wide variations of λGUT, in its upper range, as shown by the close

upper curves in figure 2.

3The example n5 = 4 at 1TeV emphasized in [8] gives non-perturbative values of αGUT once the 2-loop

terms are included in gauge beta functions.
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Figure 2: The maximal value of mh, see eq. (1.3), in NMSSM without extra matter (red) and with

n5 = 3 extra 5 + 5̄ at 1TeV (blue). The values of λGUT are the same as in figure 1. The stop mass

is fixed at mt̃ = 300GeV with moderate mixing, |At/mt̃| . 1.

Both figure 1 and 2 are for vanishing κ
3
S3 coupling in the superpotential, but they are

all insensitive to any choice of κGUT/4π ≤ 0.05, since κ is rapidly driven to zero at lower

energies by the RGE evolution. A larger κGUT would however reduce the maximum λ at

the weak scale.

Finally notice that the curves without any extra matter start at tan β ≃ 1.6 because

at lower tan β, unlike in the case with extra matter, the top Yukava coupling hits by itself

the perturbative bound of 0.3 · 4π before getting to the unification scale.

Recently, Dine, Seiberg and Thomas [10] have claimed that in a singlet extension of

MSSM based on the superpotential µH1H2 + λSH1H2 + 1
2
MS2 one can raise the Higgs

mass by a significant amount while maintaining manifest perturbative unification without

extra matter at intermediate scales. E.g., one of their examples ([10], section 4.1) had

mh = 120 GeV for tan β = 4, λ = 0.7, mt̃ = 300 GeV4 and no mixing, which is in clear

contradiction with figure 2. As is stressed in the Introduction, our bound on mh applies to

any Higgs potential of the form (1.4), and in particular to the superpotential of [10]. We

believe that the expansion analysis of [10], based on integrating out S and analyzing the

spectrum of light states in terms of coefficients of dimension 6 operators, must be breaking

down, and this explains the discrepancy.

We conclude this section by analyzing the effect of extra SU(5) multiplets on the gauge

coupling unification. In table 1 we show the prediction of αS(MZ) for n5 = 3 from the

running of the gauge couplings at one and two loops, compared with the standard case

(n5 = 0), without any threshold effect. In the same table we give, for the two cases, the

corresponding value of the unified coupling αG. As is well known, the one loop prediction

is very close to the experimental value αS(MZ) = 0.1176(20), and of course this conclusion

is left unchanged by the addition of extra matter in full SU(5) multiplets. At two loops,

the prediction for n5 = 3 is brought closer to the experiment compared to the standard

4In fact they used the soft stop mass of 300 GeV, which corresponds to physical stop mass of 345 GeV,

an irrelevant difference.

– 4 –



J
H
E
P
0
3
(
2
0
0
8
)
0
0
5

n5 = 0 n5 = 3

αS(MZ) αG αS(MZ) αG

0.117 0.041 0.117 0.103 1-loop

0.130 0.043 0.123 0.154 2-loop numerical

0.129 0.043 0.122 0.143 2-loop analytical

Table 1: Prediction for αS(MZ) in the standard case (n5 = 0) and for n5 = 3 (5+ 5̄) at 1 TeV. We

use one and two loop gauge beta functions given in appendix A without the two loop contributions of

λ and y, which can later be included perturbatively. The input MS values are α̂(MZ)−1 = 127.918,

sin2 θ̂W (MZ) = 0.23122. We do not include any threshold corrections. The last line of the table

is obtained by treating the 2-loop terms as perturbative corrections to the 1-loop results, following

the standard method as described e.g. in [11].

n5 = 0 result. However, the unavoidable presence of threshold corrections does not allow a

significant distinction between the two cases. In fact, a i-th (5+5̄) split into a SU(3)-triplet

of mass Mdi and a SU(2) doublet of mass MLi, αS(MZ) gives a further one loop threshold

correction
δαS(MZ)

αS(MZ)
≃ 9αS(MZ)

14π
log

Mdi

MLi
≈ 2% log

Mdi

MLi
. (2.1)

There is furthermore a two loop contribution from λ itself, dominated by the UV,

δαS(MZ)

αS(MZ)
≃ −9αS(MZ)

56π
log

(

λ2
GUT

2π2
log

MGUT

MZ

)

, (2.2)

i.e., numerically, δαS(MZ)/αS(MZ) ≃ −(1 ÷ 2)% for λGUT/4π = 0.3 ÷ 0.2.

3. A simple 2×2 mixing model

As already mentioned, what really matters for the NMSSM phenomenology, more than

mh itself, are the masses and compositions of the physical scalars. Before mixing with

h, the MSSM has two other CP-even fields, s1, s2 (in their mass-squared diagonal basis).

Both their masses and compositions depend on all the various parameters of the NMSSM.

Nevertheless, none of them is coupled to VV.

Mixing of h with s1 and s2 (if one, or perhaps both, of these states are lighter than

h) can help increase the mass of h. After the mixing, s1 and s2 acquire coupling to VV

and become subject to LEP searches. As we are going to see, these mixing cannot be

large for consistency with LEP. As such, one can analyze individually their additive effects

without making any significant error. We can then consider a simplified 2×2 mixing model5

between h and the lightest, s1, among the two states not coupled to ZZ. Thus we consider

a mass matrix

M2
2×2 =

(

m2
h ∆m2

∆m2 m2
s1

)

(3.1)

5The effects of a 2×2 mixing model of this type has already been considered in the NMSSM [9, 5] and

in the MSSM as well [12 – 14],[15].
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Figure 3: For two reference values mh = 110GeV (left) and mh = 120GeV (right) we plot the

normalized squared coupling, eq. (3.2), of the lightest scalar h1 in the 2×2 mixing model eq. (3.1),

plotted as a function of its mass m1 and the mass of the heavier state m2. The region below the

lower blue (upper red) curve is consistent with the 95% C.L. bounds [16] from nonobservation of h1

at LEP2, assuming it decays into bb̄ (bb̄ bb̄). The heavier scalar h2, to be consistent with the LEP2

searches, should have the mass above ∼ 114GeV.

with a fixed mh and arbitrary ms1
< mh and ∆m2.

In view of the previous section and having in mind the LEP bound of about 115 GeV,

only valid for the SM Higgs boson, we take for mh two reference values, 110 and 120 GeV,

close to the upper bounds on mh without or with extra matter respectively. In absence of

mixing only the latter case would be compatible with LEP data. With mixing, however,

which is generally present, the situation may change.

In figures 3, we describe the effect of mixing h with s1 in the two cases. In the plane

of the two mass eigenvalues (m1,m2) — from which we can uniquely reconstruct m2
s1

and

∆m2 — we give the isolines of the squared coupling of the lightest state to ZZ, normalized

to the SM Higgs boson coupling:

ξh1ZZ =

(

gh1ZZ

ghZZ

)2

. (3.2)

From the data of ref. [16] this allows to determine in the same plane the 95% C.L. bound

from the non-observation of the lightest state, assumed to decay in bb̄ with SM branching

ratio. For later purposes we also consider the decay in bb̄ bb̄ with a branching ratio close to 1.

Given the actual numbers, a quick way to understand from these figures the compatibility

with LEP data is to see if there are values of the heaviest mass m2 above 115 GeV and

simultaneously allowed by the bound on the lightest state.

The conclusions are quite clear. With an unmixed value of mh = 110 GeV, and a

fortiori for lower values, it is hardly possible to obtain consistency with the LEP data.6

6However, notice the point at (m1, m2) ≈ (95, 115) GeV which has been emphasized in the literature [13]

in connection with a slight excess of events at LEP.
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This means that, with a moderate stop mass and a small At-term, the NMSSM without

extra matter and with standard Higgs boson decays can perhaps be accommodated with

LEP data, if at all, only in a small corner of its parameter space. This may explain the

interest of considering the decay of the lightest state into τ τ̄ τ τ̄ , which is experimentally

less constrained [3].

On the other hand, the mh = 120 GeV case is obviously compatible with LEP data for

small enough mixing. More important is that some mixing effects will inevitably be present,

which can push the heavier state even further up with a somewhat reduced coupling to

the ZZ, while keeping consistency with the LEP data for the lower state. This can be a

characteristic feature of the NMSSM with extra matter contributing to the RGE running

of the coupling constants, and is the phenomenological pattern to which we want to draw

attention.

4. An explicit example based on an approximate Peccei-Quinn symmetry:

PQ SUSY

4.1 The Lagrangian and the allowed parameter space

An independent motivation for the NMSSM is that it may provide a simple solution of the

so called µ-problem: the supersymmetric superpotential mass term µH1H2 gets replaced

by λ〈S〉H1H2 and all the mass terms in the Lagrangian originate from supersymmetry

breaking. This possible solution of the µ-problem invites a symmetry explanation of the

absence of mass terms in the superpotential. Such symmetries can be a continuous R-

invariance and/or a Peccei-Quinn (PQ) symmetry. In this paper we choose a PQ symmetry

since: i) it removes the κ
3
S3 coupling, thereby helping to maximize λ at the weak scale;

ii) it can reduce the number of parameters in the supersymmetry breaking Lagrangian

as well, since PQ may be approximately realized in this sector without conflicting with

experiments. This version of NMSSM, which we call “PQ SUSY,” has a minimal number

of parameters, and contains a light pseudo-Goldstone boson. For earlier considerations of

NMSSM in the PQ limit, see [6, 7].

Up to the small breaking of the PQ symmetry, the Lagrangian is uniquely fixed by the

superpotential term

f = λSH1H2, (4.1)

by the soft non-supersymmetric piece of the scalar potential

Vsoft = m2
S |S|2 + m2

1|H1|2 + m2
2|H2|2 + (AλλSH1H2 + H.c.), (4.2)

and by the gaugino mass terms, which we shall take large relative to λ〈S〉 (see below).

Small breaking terms of the PQ symmetry, like δV = m2S2 + BµH1H2+H.c. , will have to

be present. However we assume them to be small enough only to give mass to the other-

wise massless pseudo-Goldstone boson, without significantly affecting any of the remaining

properties of the model. We have checked that this is a consistent approximation.

– 7 –
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Figure 4: The allowed region of the (mS , Aλ) plane (see the text) for tanβ = 1.5, 2, 2.5 and λ

fixed at 0.65, 0.7, 0.75, respectively.

When it exists, the CP-conserving, SU(2) × U(1) → U(1) breaking vacuum is related

to the Lagrangian parameters by (x = m2
S/λ2v2)

λ2v2 = M2
Z +

A2
λ

1 + x
+

m2
1 − m2

2

cos 2β
, (4.3)

sin2 2β = 2

[

(1 + x) − (1 + x)2
m2

1 + m2
2 + λ2v2

A2
λ

]

, (4.4)

〈S〉 ≡ vs =
Aλ

2λ(1 + x)
sin 2β . (4.5)

Note that the scalar sector defined by eqs. (4.1), (4.2) depends upon five parameters (apart

from the pseudo-Goldtone mass mG): λ and m2
1,m

2
2,m

2
S , Aλ. We trade m2

1,2 for v and tan β.

A useful way to represent the various results, which we shall follow, is to show them in the

plane (mS, Aλ) for fixed values of λ, tan β. In particular the vacuum in eqs. (4.3), (4.4), (4.5)

is indeed the true minimum of the overall potential only in a portion of this parameter

space. Figure 4 shows the allowed parameter space for tan β = 1.5, 2, 2.5 and λ close to

the maximal allowed values from figure 1. We see that Aλ has a maximal and minimal

allowed value for each mS in an interval 0 < mS < mmax
S ≃ 70 GeV. Here m2

S > 0 is

required by the global stability. The upper limit on Aλ comes from imposing that V < 0

at the minimum (4.3), (4.4), (4.5), so that it is preferred to the trivial stationary point

at v1 = v2 = vs = 0. The lower limit on Aλ comes from the experimental bound on

the chargino mass, m(χ±) > 103 GeV [17], via eq. (4.14) below. The constraint of local

stability does not further restrict the parameter space.

– 8 –
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4.2 Higgs boson and higgsino spectra

The spectrum of the Higgs boson sector is straightforwardly obtained by expanding around

the above minimum. For the single charged boson one finds

m2
H± = M2

W +
A2

λ

1 + x
− λ2v2. (4.6)

Out of the two neutral CP-odd states, one is massless in this approximation (the PQ

Goldstone G) and the other has mass

m2
A =

A2
λ

1 + x
+ λ2v2(1 + x). (4.7)

Their compositions in terms of the neutral fields

H0
1 =

1√
2
(h1 + iπ1), H0

2 =
1√
2
(h2 + iπ2), S =

1√
2
(s + iπs), (4.8)

are

G = − sinαπs + cos α(cos βπ2 − sin βπ1), (4.9)

A = cos απs + sin α(cos βπ2 − sin βπ1), (4.10)

where

tan α =
Aλ

λv(1 + x)
. (4.11)

The 3 × 3 squared mass matrix of the CP-even neutral scalars is best written in the basis

(H = cos βh2 − sin βh1, h = cos βh1 + sin βh2, s) (4.12)

where it has the form

M2 =







A2
λ

1+x + (M2
Z − λ2v2) sin2 2β −1

2
(M2

Z − λ2v2) sin 4β −Aλλv cos 2β

∗ M2
Z cos2 2β + λ2v2 sin2 2β −Aλλv sin 2β x

1+x

∗ ∗ λ2v2(1 + x)






.

(4.13)

Note, as anticipated, that M2
22 = (m0

h)2. Note also that one of the mixing terms between

h and the two other scalars, M2
12 is always small, whereas the other, M2

23, is essentially

controlled by x (or m2
S). The mixing pattern discussed in the previous section is precisely

realized in this case, as shown in figure 5, where one has the two lightest scalar masses as

functions of mS for (λ, tan β,Aλ) = (0.7, 2, 400 GeV). The lightest scalar mass is below

the LEP limit; its dominant decay mode (see the next section) is into 2 PQ pseudo-

Goldstones: S1 → GG → 4b. From figure 6 we see that for (λ, tan β) = (0.7, 2) the LEP

constraint on the S1 coupling to ZZ is satisfied in most of the parameter space allowed by

the potential stability and the chargino mass bound.7 The heaviest CP-even scalar has

mass mS3
≈ Aλ/(1 + x)1/2 which for Aλ = 400 GeV is in the 380 ÷ 400 GeV range, while

A and H± are ∼ 15 GeV heavier and lighter than S3, respectively.

– 9 –
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curve). In the same plot we show contours of the lightest CP-even scalar mass. As always, we

include the stop quantum correction with mt̃ = 300GeV.

For heavy gaugino masses, the masses of the higgsinos are controlled by the effective

7The processes e+e− → Z∗ → S1,2G followed by S1,2 → GG could not possibly be seen at LEP2: the

normalized squared couplings ξZS1,2G are tiny, . 10−2, one order of magnitude below the LEP2 limits [16].
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Figure 7: The neutralino masses in the model of section 4 for (λ, tan β) = (0.7, 2) and the chargino

mass µ in its typical range. We have m(χ1)+m(χ2) = m(χ3) since the neutralino mass matrix (4.15)

is traceless.

µ-parameter

µ = λvs =
Aλ

2(1 + x)
sin 2β. (4.14)

The single charged higgsino has mass m(χ±) = µ, whereas the 3×3 neutralino mass matrix

in the basis (h̃1, h̃2, s̃) has the form

Mχ =







0 µ λv sin β

∗ 0 λv cos β

∗ ∗ 0






. (4.15)

Figure 7 shows the values of the neutralino masses versus m(χ±) in its typical range,

100÷ 200GeV, for (λ, tan β) = (0.7, 2). For these masses the LEP2 searches have not been

possibly effective. Indeed, the process e+e− → Z∗ → χ1χ2 is within the LEP2 kinematic

limit in a part of the parameter space (see figure 7). However, the production cross section

turns out to be well below the ∼ 0.1 pb limit set in [17] due to phase space and coupling

suppressions.

Another possible process is e+e− → χ1χ1γISR with a photon (from Initial State Ra-

diation) and missing transverse energy in the final state, which is constrained by LEP2

searches of extra neutrino species [18]. However, we concluded that the existing data can-

not rule out a χ1 with a somewhat reduced Zχ1χ1 coupling and mass above mZ/2, as it is

in our case (see also [19]).

If the gravitino is the lightest SUSY particle, the lightest neutralino will predominantly

decay into the gravitino and the pseudo Goldstone boson G. However, if the SUSY breaking

scale
√

F exceeds about 1000 TeV, these decays happen outside the detector and do not

modify collider phenomenology of the model (see section 5).

4.3 Higgs boson couplings and branching ratios

The phenomenology of the model is made peculiar by the presence of the light pseudoscalar
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Production coupling Branching ratios

S1 ξS1tt, ξS1V V . 20% (figure 8) BR(GG) ≥ 98%)

S2 ξS2tt, ξS2V V ≃ 100%

See figure 9:

BR(χ1χ1) = 50 ÷ 90%

BR(GG) ≃ 1 − BR(χ1χ1)

S3 ξS3tt ≃ 20%, ξS3V V negligible

See figure 9:

BR(χiχj) ≃ 35% (of which 50% into χ1χ1)

BR(ZG) ≃ 30%

BR(SiSj) ≃ 20%

Table 2: The neutral CP-even Higgs boson dominant decay modes and the couplings relevant for

their production at the LHC via gluon fusion and vector boson fusion processes, for (λ, tan β, Aλ) =

(0.7, 2, 400 GeV) and 0 < mS . 40GeV.

G, with an unknown mass, mG, coming from the breaking of the PQ symmetry and assumed

to be relatively small.

If mG is below the bb̄ threshold, the pseudoscalar can be seen in radiative Υ decays [20].

The relevant branching ratio is given by [21]

BR(Υ → γG)=F (cos α)2(tan β)2
GF m2

b√
2παEM

BR(Υ → µ+µ−)

≃ 2 × 10−4 F (cos α)2(tan β)2, F =

(

1 − m2
G

m2
Υ

)

F0,

where α is the angle in (4.11), and the suppression factor F0 . 0.5 is due to QCD,

bound state and relativistic corrections (see [22], section 3.1). For (λ, tan β,Aλ) =

(0.7, 2, 400 GeV) we get BR(Υ → γG) ≃ 0.5 × 10−5. The experimental limits on this

branching ratio depend crucially on the decay properties of G. An interesting possibility

occurs if 2mτ < mG < 2mb, so that G decays into τ+τ−. In this case the current limit

from CLEO is [23]

BR(Υ → γG(→ ττ)) . 10−4,

and a dedicated run by BABAR may improve it soon by 1 − 2 orders of magnitude.

Below we will assume that mG is above the bb̄ threshold, corresponding to a relatively

less restricted region of parameter space. The pseudoscalar then decays into bb̄ and τ τ̄

with branching ratios close to the branching ratios of the SM Higgs boson.

All the couplings and decay rates for the other Higgs bosons are easily determined from

the parameters of the model as given in the previous section. Table 2 and figures 8, 9 illus-

trate the main features of the most relevant quantities for (λ, tan β,Aλ) = (0.7, 2, 400 GeV)

and 0 < mS . 40 GeV (see figure 6).

Using these numbers one can make a preliminary conclusion that observing these states

at the LHC will not be easy, since the production cross sections are suppressed, and the

dominant decay products do not allow for easy background discrimination. Obviously, a

more detailed study is required to assess the LHC discovery potential.
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Figure 9: The dominant branching ratios of S2 (left) and S3 (right) for (λ, tan β, Aλ) =

(0.7, 2, 400GeV).

4.4 Fine tuning

It is interesting to know an estimate of the finetuning required to satisfy the various re-

strictions on the parameters of the model under consideration. For an early discussion

of finetuning in the NMSSM see [24]. The first thing to check is if there is too strong

dependence of the Z-mass, or of the vacuum expectation value v in eq. (4.3), on the various

parameters. The strongest such dependence is on the parameter A2
λ. Naively this would

seem to require finetuning of the order Aλ/λ2v2 ∼ 10 for Aλ = 400 GeV. However, this

estimate does not take into account the fact that the two cancelling terms are not totally

independent: the variation of Aλ influences the other term via the angle β as determined

by the second equation (4.4). An estimate which takes this effect into account is given by
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the logarithmic derivative8

∆ =

∣

∣

∣

∣

∂ log v2

∂ log A2

∣

∣

∣

∣

, (4.16)

which can be evaluated numerically, see figure 10. We see that tan β below ∼ 1.7 starts to

be disfavored by this finetuning, although tan β = 2, Aλ = 400 GeV is OK with less than

10% finetune.

Whereas these considerations apply to the dependence of v on the low energy param-

eters, it is also necessary to check the consistency of the values of these same parameters

with the expected contributions due to RGE evolution.9 Here the difference m2
2 −m2

1 gets

a contribution due to the stop mass:

δ(m2
2 − m2

1) =
3y2

t

4π2
(m2

t̃
− m2

t ) log
Λmess

v
(no mixing) (4.17)

where log Λmess/v = 6 ÷ 40 for Λmess = 100 TeV÷1019 GeV. This equation can be used to

set an upper bound on the stop mass with no finetuning, i.e. for δ(m2
2−m2

1)/(m
2
2−m2

1) = 1,

see figure 11, where we take low mediation scale, Λmess = 100 TeV.10 We see that mt̃ =

300 GeV, as assumed above, is safely within the allowed range.

Finally we notice that, although v in eq. (4.3) is only weakly dependent on m2
S, the

current experimental constraints mostly on the chargino mass (see eq. (4.14) and figure 4)

require mS to be below 40÷ 50 GeV. At the same time there is a one-loop contribution to

the running of m2
S due to A2

λ:

δm2
S =

1

4π2
λ2A2

λ log
Λmess

v
(4.18)

For λ = 0.7, Aλ = 400 GeV, and Λ = 100 TeV this gives δm2
S = (110 GeV)2. Since the

allowed range of m2
S is a factor 5÷ 10 smaller, to comply with this limit it is clear that the

model under consideration would again prefer low mediation scale.

5. Conclusions and outlook

Even if we assume, with good reasons indeed, that supersymmetry is relevant in nature,

there is no water-tight argument that requires the presence of supersymmetric signals at

the LHC. Our best hope is a natural solution of the hierarchy problem of the Fermi scale,

which makes such a presence likely. For this to be the case, however, requires a low level of

fine tuning in the Z-mass, i.e. a maximally natural solution of the hierarchy problem. The

LEP limit on the Higgs boson mass is particularly important, since it excludes the most

natural regions of parameter space of the simplest supersymmetric models. This amply

motivates the focus on supersymmetric extensions of the SM that minimize this fine-tuning

and remain, at the same time, reasonably simple.

8As a consequence of the above effect the derivative ∂v2/∂A2 is actually negative.
9Alternatively we could look directly at the dependence of v on the high energy paremeters, which are

considered more fundamental.
10To make this plot, parameters m2

1 and m2
2 have to be expressed in terms of v, λ, tan β, Aλ and mS from

equations (4.3), (4.4).
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Figure 11: The maximal value of physical stop mass (with no mixing) which is consistent with

the naturalness bound δ(m2
2 − m2

1)/(m2
2 − m2

1) < 1, see eq. (4.17). From below up: (tanβ, λ) =

(1.5, 0.65), (2, 0.7), (2.5, 0.75). Mediation scale Λmess = 100TeV. In this plot we assumed mS = 0,

but the change for small allowed values of mS is negligible.

A particularly simple possibility for increasing the Higgs mass is to add a new quartic

interaction for the Higgs doublets via the superpotential interaction λSH1H2. However,

to maintain perturbative unification of the gauge couplings, a clear success of weak scale

supersymmetry, the value of λ is limited. With minimal matter content this interaction

provides at most an additional ∼ 10 GeV to the Higgs boson mass, leading to only a small

allowed region of parameter space, even including mixing amongst the Higgs bosons. In

contrast, with additional matter the perturbative evolution of couplings allows a larger

value of λ, increasing the Higgs boson mass by up to ∼ 20 GeV compared to the theory

without the singlet field. Furthermore, in this case mixing can augment the Higgs boson

mass by another 2–8 GeV, considerably enlarging the allowed region of parameter space.

The extra matter implies that the gauge couplings are larger in the UV, and the

top coupling smaller, compared to the minimal matter case. Providing the extra matter

fills complete SU(5) multiplets, the successful unification of gauge couplings at 1 loop is
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unaltered. The changes from 2 loops and threshold corrections depends on the nature of

the extra matter. In the case of 5 + 5̄ representations, the prediction for αs(MZ) from

2 loop running is decreased, improving the agreement with data, but this is offset by an

expected increase in αs(MZ) from threshold corrections from non-degeneracies within the

5+ 5̄ multiplets. The situation with 10+1̄0 representations is the opposite: 2 loop running

increases the discrepancy with data, but is countered by the threshold corrections. In either

case, the significance of gauge coupling unification is comparable to the standard case with

minimal matter.

In this work we have considered PQ SUSY — a version of the NMSSM that incorporates

the above mechanism for enlarging the Higgs mass and is fully realistic, with a minimum

number of parameters. The superpotential is assumed to be exactly invariant under a

Peccei-Quinn symmetry, elegantly solving the µ problem, while the soft scalar interactions

include small PQ breaking interactions to give a mass to the pseudo-Goldstone boson G.

The theory possesses just two parameters more than the MSSM — one is the soft mass

parameter for the scalar S, m2
S, and the other is the mass for G. A combination of vacuum

stability and chargino mass limits implies a restricted range for m2
S , so that a 10 − 20%

fine tuning is necessary, and a low messenger scale is preferred.

The Higgs boson system has a few characteristic properties in its spectrum and in its

couplings. The spectrum contains two CP-even neutral scalars relatively close in mass,

one above and one below the “naive” LEP bound of 115 GeV by 10 ÷ 20 GeV, and with a

shared coupling to the vector boson pairs, VV. Only the sum of these coupling squared is

close to the squared coupling of the SM Higgs boson to VV. Related to the approximate

Peccei-Quinn symmetry, the Higgs boson spectrum also contains a CP-odd light state, G,

present in the main decay modes of all the CP even neutral scalars. G itself decays to

bb̄ and τ τ̄ , with branching ratios close to those of a light SM Higgs boson. Quite clearly,

to assess the discovery potential of such a Higgs boson system at the LHC or TeVatron

requires, and deserves, a detailed examination.

A small region of parameter space where 2mτ < mG < 2mb and G decays into τ+τ−

is also allowed; in this case the model predicts BR(Υ → γG) within reach of the existing

B-factories.

The general phenomenology of the model crucially depends on the properties of the

lightest neutralino, which is predicted to have a mass near 50 GeV. Naturalness consider-

ations suggest a low scale for supersymmetry breaking,
√

F , so that the gravitino is the

LSP and χ1 the next-to-LSP. In this case, all superpartner production events at collid-

ers will yield at least two χ1, with each decaying predominantly into a gravitino and a

pseudo-Goldstone G, with a width of order 10−5 eV for
√

F = 100 TeV. Given the scaling

Γ(χ1) ∝ 1/F 2, χ1 could therefore decay inside the detector if
√

F is less than of order

1000 TeV. Pair production of χ1 at LEP2 has a cross section of order 0.1 pb, leading in this

case to events with 4 b jets and missing energy. We do not know if searches by the LEP

experiments would have detected this signal. If not, the generic superpartner production

signal at LHC/TeVatron may include 4 b jets together with the missing energy. The nat-

uralness argument by itself is not sufficiently tight to prefer χ1 decays inside rather than

outside the detector.
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Finally, the consistency of our model with the ElectroWeak Precision Tests merits

further work; in particular, a non-negligible correction to the T parameter can be induced

by values of λ in the region of 0.6–0.8.

It is important to note that there are alternative versions of the NMSSM with extra

matter that incorporate both an enhanced Higgs boson mass, perturbative gauge coupling

unification and a solution to the µ problem. The absence of mass parameters in the super-

potential may be guaranteed by an R symmetry, that nevertheless allows the interaction

(κ/3)S3 as well as λSH1H2. In order that the S3 interaction not substantially reduce

the Higgs mass, the weak scale value of κ should be less than about 0.1. However, the

form of the renormalization group equations allows κ at the unification scale to be close

to unity, so this is not a powerful constraint on the theory. What is the form of the R

symmetry breaking in the supersymmetry breaking scalar interactions? If Aλ is the only

significant R breaking parameter, and m2
S > 0, then this theory is a perturbation of the

model discussed in this paper. On the other hand there is a new minimum for m2
S < 0 that

is very different from the one examined here, where the S3 interaction prevents runaway

behavior for vs. There are also models of both the PQ and R types with large values of the

symmetry breaking in the soft scalar interactions, but in these cases there are several more

parameters that enter the phenomenology. Nevertheless, these models may be of interest

since they may remove the need to tune m2
S to small values.

Note added. After completion of this work we became aware of the work of P. Schuster

and N. Toro [26] where the NMSSM in the PQ and in the R-symmetric limits is analyzed

with special emphasis on the fine tuning issue. We believe that the present work usefully

complements ref. [26] in many different aspects.
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A. 2-loop beta functions

For the convenience of the reader we give here 2-loop supersymmetric beta functions used
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to produce results in section 2. The gauge coupling beta functions are:

dgi

d log µ
=

1

16π2
big

3
i +

1

(16π2)2
g3
i





3
∑

j=1

bijg
2
j − bi;topy

2
t − bi;λλ2



 ,

bi =







33
5

+ n5

1 + n5

−3 + n5






, bi;top =







26
5

6

4






, bi;λ =







6
5

2

0






,

bij =







199
25

+ 7
15

n5
27
5

+ 9
5
n5

88
5

+ 32
15

n5
9
5

+ 3
5
n 25 + 7n5 24

11
5

+ 4
15

n5 9 14 + 34
3

n5






.

Our result for bij agrees with [25]. The dependence of bij on n5 as given in [8] is wrong.

The relevant beta functions of yt and of the NMSSM couplings λ, κ are

dyt

d log µ
=

yt

16π2

(

6y2
t +λ2− 13

15
g2
1−3g2

2−
16

3
g2
3

)

− yt

(16π2)2
(22y4

t +3λ2y2
t +3λ4+2κ2λ2) ,

dλ

d log µ
=

λ

16π2

(

4λ2+3y2
t +2κ2−g2

1−3g2
2

)

− λ

(16π2)2
(10λ4+9y2

t λ
2+9y4

t +8κ4+12λ2κ2),

dκ

d log µ
=

κ

16π2
(6κ2 + 6λ2)− κ

(16π2)2
(24κ4 + 24λ2κ2 + 12λ4 + 18y2

t λ
2 ).

In our analysis we have omitted the two loop contributions of gauge couplings to the

running of yt,λ, κ. This is legitimate since gi do not approach non-perturbative values in

the UV.
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